avva: (Default)
avva ([personal profile] avva) wrote2014-09-14 03:18 am

о вращениях и др. (математическое)

Expository papers by K. Conrad

Много небольших, обычно хорошо написанных заметок на разные математические темы, примерно на уровне конца первой/первого года второй степени по математике.

Вот, скажем, понятно и красиво написанный разбор группы изометрий плоскости с помощью комплексных чисел. Рядом - изометрии R^n с помощью ортогональных матриц.

P.S. На днях прочитал хорошее объяснение того, как с помощью кватернионов представляют вращения в трехмерном пространстве (и четырехмерном, если вам вдруг нужно). В первых двух главах "Naive Lie Theory" John'а Stillwell'а. Читаю эту книгу, нравится.

[identity profile] utnapishti.livejournal.com 2014-09-18 08:49 am (UTC)(link)
Да на самом первом шаге:
x + 1/x = 1 -> х^2-х+1 =0 -> х^3+1 = (х+1)(х^2-х+1)=0.

Я пытался сделать и так, как в анонимном комментарии, но закономерность неочевидна. Получается бесконечная матрица из биномиальных коэффициентов, и нужно доказать, что в обратной матрице суммы строк цикличны. 1, -2, 1, 1, -2, 1, ..., если брать только нечётные степени, или как в том комментарии, если брать все.

Вообще же в общем виде х + 1/x = 1 -> x^k + 1/x^k = 2 cos (k*pi/3). Наверняка есть какое-нибудь "умное" доказательство.