Jun. 24th, 2011

avva: (Default)
Предположим, мы взяли квадратный корень из какого-то натурального числа, которое не является целым квадратом: например, √7. Добавим к нему еще какой-нибудь такой корень, например, √6, потом еще √15, может быть еще раз √7, и так далее и так далее. Сможем ли мы когда-нибудь "вернуться" к натуральному числу в сумме?

Мне интуитивно кажется ясным, что нет (но не все, кому я предложил эту задачу, соглашаются). Когда мы берем корень , мы как бы уходим из рациональных чисел в огромную пустыню иррациональных, и обратно дорогу уже не найти. Так мне это интуитивно представляется.

Эта задача мне кажется любопытной тем, что на ее примере легко продемонстрировать пользу некоторых начал высшей математики. Если знать, что такое "поле", "расширение полей", "векторное пространство" итд., то доказать, что действительно невозможно вернуться к натуральному числу, очень просто и естественно. А совсем элементарное доказательство, которое использует только числа, найти гораздо труднее, и оно выглядит менее естественным и более запутанным.

Вот эти доказательства, для тех, кому любопытно:
Read more... )

December 2025

S M T W T F S
  123 4 56
78 9 10 11 1213
1415 1617181920
21 22 23 24 2526 27
2829 3031   

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Dec. 30th, 2025 06:41 pm
Powered by Dreamwidth Studios