avva: (Default)
[personal profile] avva
Я обнаружил курьезный факт, который не очень широко известен, кажется:

В 1678-м году французский академический журнал Journal des sçavans (стр. 75) опубликовал письмо Лейбница редактору журнала, в котором Лейбниц рассказывает о новом свойстве простых чисел, которое он открыл: все простые числа больше 5 обязательно либо на 1, либо на 5 больше числа, кратного шестерке. Иными словами, любое простое число больше 5 можно записать в форме 6n+1 либо 6n+5 для какого-то n. Иными словами, при делении на 6 оно обязательно дает остаток 1 или 5.

Скан оригинала по-французски; не уверен, что есть перевод на другие языки, но в любом случае там написано ровно то, что выше, ничего больше интересного нет:


Вкратце объяснение, что здесь курьезного (математики среди читателей это уже поняли, у них фейспалм сейчас). Простые числа - те, которые не делятся ни на какие другие, кроме 1 и самих себя. Любое число при делении на 6 дает один из остатков 0,1,2,3,4,5. Но если оно дает остаток 0, 2 или 4, то оно делится на 2, то есть не простое (кроме самой двойки). Если дает остаток 3, то делится на 3, опять не простое. Остаются остатки 1 и 5, так что неудивительно, что любое простое число больше 5 должно давать один из этих остатков. Это совершенно тривиальный результат, не заслуживающий статьи в журнале (да, даже в 1678-м году). Странно и любопытно, что Лейбниц, который примерно в те годы открыл интегральное исчисление (параллельно с Ньютоном) и делал другие серьезные открытия в математике, не заметил этой тривиальности и описал этот факт как интересное и многообещающее открытие.
This account has disabled anonymous posting.
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

January 2026

S M T W T F S
    1 2 3
4 5 6 7 8 910
11121314151617
18192021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 10th, 2026 04:36 am
Powered by Dreamwidth Studios