avva: (Default)
[personal profile] avva
Прочитал про теорему Дена о разрезании: если прямоугольник можно разрезать на квадраты, то отношение его сторон рационально. Интуитивно это кажется логичным, но доказать не так уж и просто. Обратное утверждение тривиально: если отношение сторон рационально и скажем равно p/q, то увеличив масштаб в q раз, получим прямоугольник с целыми сторонами, который можно разрезать на квадраты 1x1.

Линейная алгебра помогает построить простые и красивые доказательства:

Отношение длин сторон прямоугольника W,H иррационально - это то же, что "W,H линейно независимы как векторы в пространстве R над Q". Это в свою очередь значит, что существует Q-линейная функция f:R->R, так, что f(W) и f(H) - любые удобные нам значения.

Для любой Q-линейной функции f определим f-площадь прямоугольника со сторонами A,B как f(A)*f(B). Тогда легко увидеть, что при разрезании прямоугольника на другие прямоугольники f-площадь целого равна сумме f-площади частей (это очевидно при разрезании одного прямоугольника на два, и к повторению этого можно свести любое разрезание, если сделать из него "сетку", продлив все внутренние линии до краев).

Как ни странно, доказательство почти закончено. f-площадь любого квадрата равна f(A)*f(A), то есть неотрицательна. Отсюда f-площадь любого прямоугольника размером W:H, разрезанного на квадраты, неотрицательна. Но если W/H не рационально, то мы можем выбрать такую f, что f(W)=1, f(H)=-1, и его f-площадь равна -1, это противоречие.

Другое доказательство с помощью линейной алгебры вместо f-площади пользуется тензорным произведением R@R. Если стороны прямоугольника w,h линейно независимы, то {w,h} можно продлить до базиса, и поэтому ясно, что в R@R линейно независимы также векторы w@w, w@h, h@w, h@h. С другой стороны, если прямоугольник разбит на квадраты, то w@h является суммой членов вида a@a (доказательство аналогично примеру с площадью). Это значит, что изоморфизм в R@R, который меняет координаты местами, одновременно переводит w@h в h@w и оставляет неизменным, т.е. w@h = h@w, а это противоречит их независимости.

Еще есть красивое доказательство с помощью гармонических функций на конечных графах (https://www3.nd.edu/~andyp/notes/TilingBySquares.pdf) (второе в этой заметке). А в древней книжке Яглома "Как разрезать квадрат?" (1968) есть элементарное доказательство через систему уравнений, связывающих длины сторон.

P.S. Вспоминается также замечательная статья "Fourteen proofs of a result about tiling a rectangle" (https://maa.org/sites/default/files/pdf/upload_library/22/Ford/Wagon601-617.pdf), где дается много доказательство похожего, но другого по сути утверждения: что если прямоугольник разрезан на прямоугольники и у каждого внутренного прямоугольника хотя бы одна из сторон - целое число, то и у всего прямоугольника тоже хотя бы одна из сторон целая.
This account has disabled anonymous posting.
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

February 2026

S M T W T F S
1 2 3 4 5 67
891011121314
15161718192021
22232425262728

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Feb. 7th, 2026 07:29 pm
Powered by Dreamwidth Studios