avva: (Default)
[personal profile] avva
Вот рассказали забавную задачку - я думал, что знаю все задачки про сто арестантов, но оказалось, что не все. Задачка не очень сложная, но и не совсем тривиальная. Комментарии не скрываю.

Update: в комментариях есть несколько правильных решений; первым правильное решение запостил [livejournal.com profile] kaathewise.

--------------
100 узников сидят в 100 тюремных камерах, которые расположены в ряд. В одной камере всегда сидит ровно один узник.

У каждого узника есть любимая камера, в которой ему бы больше всего хотелось сидеть. При этом у разных узников любимые камеры могут совпадать. Если узнику не довелось сидеть в своей любимой камере, то он предпочитает остальные в соответствии с расстоянием до любимой. Например, если у узника любимая камера номер 25, то на втором месте - камеры 24 и 26, на третьем 23 и 27, и так далее.

На данный момент все узники рассажены по камерам каким-то образом. Известно, что существует такой способ их пересадить, чтобы увеличилось количество добра и никто не ушел обиженный. Иными словами, в результате пересадки ни один из узников не попадает на худшее с своей точки зрения место, и по крайней мере один узник попадает на лучшее.

Нужно доказать, что в такой ситуации обязательно найдутся два узника, которые согласятся поменяться местами. То есть, опять-таки, ни одному из этих двоих не станет хуже, и как минимум одному станет лучше.

Date: 2012-03-08 05:19 pm (UTC)
From: [identity profile] avva.livejournal.com
Ага, вот с этой последней поправкой, кажется, все проходит.

Замечательно, спасибо! Очень просто и наглядно. Мое собственное решение в том же духе, но несколько сложнее.

Я все же заскриню на несколько часов ваше решение, если вы не против, пока оно единственное верное ;)

December 2025

S M T W T F S
  123 4 56
78 9 10 11 1213
1415 1617181920
21 22 23 24 2526 27
28293031   

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Dec. 28th, 2025 07:22 pm
Powered by Dreamwidth Studios