задачка (математическое)
Mar. 8th, 2012 06:29 pmВот рассказали забавную задачку - я думал, что знаю все задачки про сто арестантов, но оказалось, что не все. Задачка не очень сложная, но и не совсем тривиальная. Комментарии не скрываю.
Update: в комментариях есть несколько правильных решений; первым правильное решение запостил
kaathewise.
--------------
100 узников сидят в 100 тюремных камерах, которые расположены в ряд. В одной камере всегда сидит ровно один узник.
У каждого узника есть любимая камера, в которой ему бы больше всего хотелось сидеть. При этом у разных узников любимые камеры могут совпадать. Если узнику не довелось сидеть в своей любимой камере, то он предпочитает остальные в соответствии с расстоянием до любимой. Например, если у узника любимая камера номер 25, то на втором месте - камеры 24 и 26, на третьем 23 и 27, и так далее.
На данный момент все узники рассажены по камерам каким-то образом. Известно, что существует такой способ их пересадить, чтобы увеличилось количество добра и никто не ушел обиженный. Иными словами, в результате пересадки ни один из узников не попадает на худшее с своей точки зрения место, и по крайней мере один узник попадает на лучшее.
Нужно доказать, что в такой ситуации обязательно найдутся два узника, которые согласятся поменяться местами. То есть, опять-таки, ни одному из этих двоих не станет хуже, и как минимум одному станет лучше.
Update: в комментариях есть несколько правильных решений; первым правильное решение запостил
--------------
100 узников сидят в 100 тюремных камерах, которые расположены в ряд. В одной камере всегда сидит ровно один узник.
У каждого узника есть любимая камера, в которой ему бы больше всего хотелось сидеть. При этом у разных узников любимые камеры могут совпадать. Если узнику не довелось сидеть в своей любимой камере, то он предпочитает остальные в соответствии с расстоянием до любимой. Например, если у узника любимая камера номер 25, то на втором месте - камеры 24 и 26, на третьем 23 и 27, и так далее.
На данный момент все узники рассажены по камерам каким-то образом. Известно, что существует такой способ их пересадить, чтобы увеличилось количество добра и никто не ушел обиженный. Иными словами, в результате пересадки ни один из узников не попадает на худшее с своей точки зрения место, и по крайней мере один узник попадает на лучшее.
Нужно доказать, что в такой ситуации обязательно найдутся два узника, которые согласятся поменяться местами. То есть, опять-таки, ни одному из этих двоих не станет хуже, и как минимум одному станет лучше.
no subject
Date: 2012-03-09 09:17 am (UTC)Ваш аргумент, по-моему, означает лишь то, что условие задачи может быть ослаблено и достаточно потребовать, чтобы в сумме всем заключенным было лучше, а не каждому в отдельности.
no subject
Date: 2012-03-09 09:34 am (UTC)Поскольку мы хотим доказать "i стало не хуже, j стало не хуже, и хотя бы в одном из двух случае неравенство строгое", точное условие, противное этому, будет "либо i стало хуже, либо j стало хуже, либо обоим одинаково". Это можно записать в виде трех формул в вашей нотации, но из-за "либо" суммировать их не очень получается.
no subject
Date: 2012-03-09 10:07 am (UTC)