avva: (moose)
[personal profile] avva
Вот, попалось мне сегодня простое и красивое доказательство того малоизвестного (но полезного) факта, что любой треугольник равнобедренный.



Пусть ABC - произвольный треугольник. Проведем в нем биссектрису угла A (она делит угол A пополам), отметим середину стороны BC точкой D, и проведем в ней перпендикуляр к BC.

Биссектриса A и перпендикуляр к BC либо параллельны, либо пересекаются. Если они параллельны, то легко видеть, что треугольник равнобедренный (собственно, тогда биссектриса и перпендикуляр совпадают друг с другом). Если же не паралелльны, то пусть они пересекаются в точке P, и проведем из нее перпендикуляры к двум другим сторонам, как на рисунке.

Осталось уже немного. У треугольников AEP и AFP (помечены "альфа" на рисунке) все углы равны и одна сторона общая, так что они полностью равны. Отсюда PE=PF. Треугольники PDB и PDC (помечены "гамма" на рисунке) прямоугольные с равными катетами, так что гипотенузы тоже равны: PB=PC. Наконец, треугольниким, помеченные "бета" на рисунке, тоже прямоугольные, и мы только что доказали, что у них равны гипотенузы и один из катетов, так что и второй равен: BE=CF. Добавляя к этому равенству также равные стороны треугольников "альфа", мы видим BE+EA = CF+FA, т.е. AB=AC, и треугольник равнобедренный, что и требовалось доказать.

(источник)
This account has disabled anonymous posting.
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

December 2025

S M T W T F S
  123 4 56
78 9 10 11 1213
1415 1617181920
21 22 23 24 2526 27
28293031   

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Dec. 28th, 2025 10:50 pm
Powered by Dreamwidth Studios