avva: (Default)
[personal profile] avva
Кажется, горячие индийские парни придумали полиномиальный алгоритм проверки числа на простоту. (ссылка на дискуссию в Слешдоте).


До сих пор был известен только полиномиально-вероятностный алгоритм проверки числа на простоту -- если он говорил, что число простое, то ошибался с некоторой вероятностью. Но его можно было повторять неограниченное кол-во раз, снижая эту вероятность ошибки до сколь угодно малого значения. Таким образом, с практической точки зрения уже существовал полиноминальный алгоритм проверки, и им сплошь и рядом пользуются. Но с теоретической точки зрения, это довольно интересное достижение. Многие думали, что это просто неверно, что существует такой алгоритм.

Забавно то, что, кажется, этот новый алгоритм использует очень простую арифметику, ничего продвинутого. [livejournal.com profile] french_man, если тебе это интересно, посмотри и расскажи свои впечатления. У меня сейчас совсем нет возможности заниматься внимательным вчитыванием и проверкой, увы.

Примечание: "полиномиальный" алгоритм здесь означает "полиномиальный от размера данных". Т.е. полиномиальная проверка того, является ли простым число N, должна занимать время, ограниченное полиномиалом от log(N) -- размера двоичного представления N. Предлагаемый в этой статье алгоритм работает за время O(log(N)12).

Не стоит путать этот алгоритм с алгоритмом разложения числа на множители - такого полиномиального алгоритма пока ещё никто не придумал, и скорее всего его не существует, хотя и этого не могут доказать. Открытие такого алгоритма было бы катастрофическим для немалой части современной криптографии.

Date: 2002-08-07 07:02 am (UTC)
From: (Anonymous)
>давно нашли полиномиальный алгоритм с большой степенью

какой именно?

Date: 2002-08-07 07:24 am (UTC)
From: [identity profile] avva.livejournal.com
Пятой, плюс всякие неприятные коэффициэнты, если я правильно помню. Короче говоря, он был непрактичным. Потом в 80-х нашли алгоритм получше... тут я уже подробностей не знаю, но по-моему до сих пор пользуются в основном симплексным.

Date: 2002-08-07 07:37 am (UTC)
From: (Anonymous)
в общих случаях изпользуют interior point method

http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/continuous/constrained/linearprog/section2_1_2.html

December 2025

S M T W T F S
  123 4 56
78 9 10 11 1213
1415 1617181920
21 22 23 24 2526 27
28293031   

Most Popular Tags

Page Summary

Style Credit

Expand Cut Tags

No cut tags
Page generated Dec. 29th, 2025 01:53 am
Powered by Dreamwidth Studios