avva: (Default)
[personal profile] avva
Три математических задачки олимпиадного типа. Первая лёгкая, вторая и третья чуть сложней, возможно. Решения напишу через день-два, если какие-то не решат в комментах.

1. Прямая линия, пересекающая шахматную доску размером 8x8, пересекает в ней какое-то количество шахматных полей-квадратов. Условимся, что прямая пересекает квадрат, если она проходит сквозь хотя бы одну точку внутри его (точки на границе "не считаются"). Найти максимальное число квадратов, которое может пересечь прямая.

2. На плоскости с координатной сеткой рисуем круг с радиусом 2 (радиус, не диаметр!). Какое-то количество вершин координатной сетки (точек-перекрестий) окажутся внутри круга; здесь, опять-таки, точки, оказавшиеся на границы круга, "не считаются". Найти минимальное и максимальное возможное число вершин сетки, могущих попасть внутрь круга.

3. Для каждого натурального числа n определим f(n) = количество положительных делителей числа n, т.е. чисел, на которые n делится без остатка -- включая 1 и само число n. Например, f(1)=1, а f(4)=3, потому что у четвёрки есть три делителя: 1, 2 и 4.

Каждое натуральное число n порождает бесконечную последовательность такого вида: n, f(n), f(f(n)), f(f(f(n))), ... То есть мы берём количество делителей последнего числа в списке и добавляем его в конец списка, потом опять берём уже его количество делителей и добавляем, и так до бесконечности.

Задание: найти (и доказать, естественно), для каких n порождаемая ими последовательность не содержит ни одного точного квадрата (т.е. числа вида k2, являющегося квадратом другого натурального числа).

Re:

Date: 2002-10-15 02:01 pm (UTC)
From: [identity profile] avva.livejournal.com
Всё верно.

хорошие ряды порождаются простыми числами и 1.

Только 1 не считается, он квадрат ;)

January 2026

S M T W T F S
    1 2 3
4 5 6 78910
11121314151617
18192021222324
25262728293031

Most Popular Tags

Page Summary

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 7th, 2026 03:15 am
Powered by Dreamwidth Studios