Задача в виде теоремы, очень красивой по-моему, и не слишком сложной.
На плоскости с координатной сеткой нарисован многоугольник, все вершины которого лежат в узлах сетки. Стороны многоугольника не пересекаются друг с другом (но он необязательно выпуклый). Доказать, что площадь многоугольника равна i+e/2-1, где i - количество узлов сетки, находящихся внутри многоугольника, а e - количество узлов сетки, находящихся на его границе (включая его вершины).
Если кто-то знает, не подсказывайте ;-)
На плоскости с координатной сеткой нарисован многоугольник, все вершины которого лежат в узлах сетки. Стороны многоугольника не пересекаются друг с другом (но он необязательно выпуклый). Доказать, что площадь многоугольника равна i+e/2-1, где i - количество узлов сетки, находящихся внутри многоугольника, а e - количество узлов сетки, находящихся на его границе (включая его вершины).
Если кто-то знает, не подсказывайте ;-)
Re:
Date: 2002-10-30 12:10 pm (UTC)Я скрою только Ваш коммент, ладно? не хочу, чтобы было легко в сети ответ сразу найти.
Re:
Date: 2002-10-30 12:13 pm (UTC)