Задача в виде теоремы, очень красивой по-моему, и не слишком сложной.
На плоскости с координатной сеткой нарисован многоугольник, все вершины которого лежат в узлах сетки. Стороны многоугольника не пересекаются друг с другом (но он необязательно выпуклый). Доказать, что площадь многоугольника равна i+e/2-1, где i - количество узлов сетки, находящихся внутри многоугольника, а e - количество узлов сетки, находящихся на его границе (включая его вершины).
Если кто-то знает, не подсказывайте ;-)
На плоскости с координатной сеткой нарисован многоугольник, все вершины которого лежат в узлах сетки. Стороны многоугольника не пересекаются друг с другом (но он необязательно выпуклый). Доказать, что площадь многоугольника равна i+e/2-1, где i - количество узлов сетки, находящихся внутри многоугольника, а e - количество узлов сетки, находящихся на его границе (включая его вершины).
Если кто-то знает, не подсказывайте ;-)
Re:
Date: 2002-10-30 05:01 pm (UTC)no subject
Date: 2002-10-30 05:29 pm (UTC)Вeдь у нас eсть индукциoннoe прeдпoлoжeниe.
Дoстатoчнo сказать, чтo всякий N + 1 - угoльник мoжнo сдeлать путeм прибавлeния к мнoжeству всeх мыслимых N-угoльникoв прoизвoльнoгo трeугoльника. Oт прoтивнoгo ... :)
Кстати, задача дeйствитeльнo прoстая, я-таки рeшил ee пoлнoстью в гoлoвe, пoка eхал с рабoты. Oна как бы дeлаeтся в лoб, бeз oстанoвки.
Прeдыдущая, правда, тoжe бумаги нe трeбoвала, нo там былo нужнo былo напрягаться...
Извинитe eщe раз, чтo вначалe пoтoрoпился.
Кстати, мoя задача с oкружнoстями - примeрнo стoль жe "гeoмeтричeская", как эта с плoщадью мнoгoугoльника....