новости в теории множеств
May. 19th, 2003 06:22 pmПрочитал очень захватывающую статью, рассказывающую о недавних результатах, полученных Вудином (Woodin) касательно гипотезы континуума в теории множеств. Статью можно сгрузить с этой страницы в английском или французском вариантах и разных форматах; вот прямая ссылка на английский вариант в формате PDF. Надо отметить, однако, что, хотя статья и не техническая, она подразумевает знакомство с аксиоматической теорией множеств хотя бы до уровня знакомства с общей идеей больших кардиналов.
Попробую пересказать в одном абзаце суть результатов Вудина. Как известно, гипотеза континуума (Continuum Hypothesis, CH) утверждает, что следующая по "размеру" бесконечность после бесконечности натуральных чисел N — бесконечность действительных чисел R. Иными словами, CH говорит, что любое бесконечное подмножество действительных чисел будет равномощно по своему размеру либо самим действительным числам, либо натуральным числам. Результаты Гёделя (1938) и Коэна (1963), взятые вместе, показывают, что CH независима от других аксиом обычной теории множеств ZFC; т.е. гипотезу континуума невозможно ни доказать, ни опровергнуть из обычного списка аксиом ZFC (предполагая, что ZFC непротиворечива). Эти результаты оставляют открытым вопрос о возможном включении CH или ¬CH (отрицания CH) в качестве новой аксиомы в теории множеств; вопрос о целесообразности такого включения CH или ¬CH (или другой аксиомы, из которой следует CH или ¬CH) до сих пор остаётся открытым. Поиск "удобных" и "естественных" аксиом, которые позволили бы решить множество открытых в данное время или даже независимых от ZFC вопросов — значительная часть современной теории множеств. Так вот, Вудин показал глубокую связь между CH и частью теории множеств, которая занимается исследованием очень больших бесконечных множеств (настолько больших, что вряд ли возможно доказать их существование в ZFC, и обычно их существование постулируется с помощью новых аксиом, называемых аксиомами больших кардиналов) — связь, которая раньше была неизвестна, и которая доказывается Вудином при помощи очень сложного технического доказательства, которое замечательно тем, что использует одновременно несколько разных под-дисциплин теории множеств и логики (например, теорию рекурсивных множеств и теорию дескриптивных множеств), создавая исключительно захватывающее переплетение. Используя эту связь, Вудин показал (здесь сильное упрощение), что определённая "естественная" аксиома о существовании больших кардиналов доказывает, что в любой "естественной" интерпретации теории множеств CH будет ложна, и, более того, мощность континуума (мощность множества R действительных чисел) будет равна в точности алеф-2, т.е. третьей по "величине" бесконечности (алеф-0 — мощность натуральных чисел, наименьшая бесконечность; алеф-1 — следующая за алеф-0 бесконечность, и CH как раз утверждает, что мощность множества действительных чисел R равна алеф-1; "мощность" здесь и ранее — синоним слов "размер", "величина").
Более подробное описание см. в статье, в которой также есть ссылки на более технические статьи, которые я пока ещё не видел, и вряд ли смогу прочитать в ближайшее время (не все из них и доступны мне — мои знания о больших кардиналах очень поверхностны). Но всё равно очень интересно.
Попробую пересказать в одном абзаце суть результатов Вудина. Как известно, гипотеза континуума (Continuum Hypothesis, CH) утверждает, что следующая по "размеру" бесконечность после бесконечности натуральных чисел N — бесконечность действительных чисел R. Иными словами, CH говорит, что любое бесконечное подмножество действительных чисел будет равномощно по своему размеру либо самим действительным числам, либо натуральным числам. Результаты Гёделя (1938) и Коэна (1963), взятые вместе, показывают, что CH независима от других аксиом обычной теории множеств ZFC; т.е. гипотезу континуума невозможно ни доказать, ни опровергнуть из обычного списка аксиом ZFC (предполагая, что ZFC непротиворечива). Эти результаты оставляют открытым вопрос о возможном включении CH или ¬CH (отрицания CH) в качестве новой аксиомы в теории множеств; вопрос о целесообразности такого включения CH или ¬CH (или другой аксиомы, из которой следует CH или ¬CH) до сих пор остаётся открытым. Поиск "удобных" и "естественных" аксиом, которые позволили бы решить множество открытых в данное время или даже независимых от ZFC вопросов — значительная часть современной теории множеств. Так вот, Вудин показал глубокую связь между CH и частью теории множеств, которая занимается исследованием очень больших бесконечных множеств (настолько больших, что вряд ли возможно доказать их существование в ZFC, и обычно их существование постулируется с помощью новых аксиом, называемых аксиомами больших кардиналов) — связь, которая раньше была неизвестна, и которая доказывается Вудином при помощи очень сложного технического доказательства, которое замечательно тем, что использует одновременно несколько разных под-дисциплин теории множеств и логики (например, теорию рекурсивных множеств и теорию дескриптивных множеств), создавая исключительно захватывающее переплетение. Используя эту связь, Вудин показал (здесь сильное упрощение), что определённая "естественная" аксиома о существовании больших кардиналов доказывает, что в любой "естественной" интерпретации теории множеств CH будет ложна, и, более того, мощность континуума (мощность множества R действительных чисел) будет равна в точности алеф-2, т.е. третьей по "величине" бесконечности (алеф-0 — мощность натуральных чисел, наименьшая бесконечность; алеф-1 — следующая за алеф-0 бесконечность, и CH как раз утверждает, что мощность множества действительных чисел R равна алеф-1; "мощность" здесь и ранее — синоним слов "размер", "величина").
Более подробное описание см. в статье, в которой также есть ссылки на более технические статьи, которые я пока ещё не видел, и вряд ли смогу прочитать в ближайшее время (не все из них и доступны мне — мои знания о больших кардиналах очень поверхностны). Но всё равно очень интересно.
Re:
Date: 2003-05-19 08:53 am (UTC)В некотором смысле такое X, конечно, существует. Можно просто взять всё множество R, хорошо-упорядочить (well-order) его, что возможно в ZFC благодаря аксиоме выбора, и в полученном порядке на R (который будет отличаться от обычного порядка, определённого между членами R) взять первые алеф-1 членов и назвать это X. Технически построение такого X не вызывает никаких сложностей. Но это X не будет "естественным" ни в каком полезном для нас математическом смысле, оно будет построенным ad hoc специально для этой цели.
С другой стороны, можно показать, что невозможно предъявить "естественное" множество X такого рода, для некоторых технических понятий "естественности" . Например, не существует такого множества X, которое можно было бы определить с помощью какой-то формулы в языке R; иными словами, невозможно назвать какое-то свойство действительных чисел, так, чтобы множество X всех чисел, выполняющих это свойство, было как раз размера алеф-1. Точнее говоря, доказывается, что любое "определимое" таким образом бесконечное подмножество R будет иметь размер либо самого R, либо N. Любое "промежуточное" множество обязано в некотором смысле ускользать от возможности эксплицитного описания, по крайней мере в рамках языка действительных чисел.
no subject
Date: 2003-05-20 12:19 am (UTC)