avva: (Default)
[personal profile] avva
У Ричарда Липтона в блоге наткнулся на простое и красивое доказательство того, что есть бесконечно много простых чисел; правда, оно опирается на недоказанную пока гипотезу:

Теорема. Если гипотеза Гольдбаха верна, то есть бесконечно много простых чисел.
Доказательство: предположим, что число простых чисел конечно, и P - самое большое среди них. Но тогда 2P+2 не может быть представлено в виде суммы двух простых чисел. Мы пришли к противоречию с гипотезой Гольдбаха.

Мне оно понравилось, но все-таки немного мешает то, что надо предполагать гипотезу Гольдбаха верной. После определенных усилий мне удалось снять это требование. Моя версия доказательства:

Теорема: Есть бесконечно много простых чисел.
Доказательство: Предположим, что число простых чисел конечно, и P - самое большое среди них. Согласно теореме Грина-Тао, существует арифметическая прогрессия, состоящая из P+1 простых чисел. Применяя принцип Дирихле, мы видим, что эти P+1 простых чисел невозможно уместить среди P чисел от 1 до P, поэтому наибольшее из них будет больше P, и это противоречит нашему предположению.

Липтон называет такие доказательства первоапрельскими; в его записи и комментариях есть еще несколько примеров, среди них есть поинтереснее того, что я процитировал. Особенно мне понравилось доказательство того, что в любой достаточно большой компании людей найдутся либо двое дружащих между собой, либо двое недружащих между собой.

Хоть это и не совсем тот жанр, мне кажется, стоит также упомянуть топологическое доказательство бесконечного количества простых чисел Фюрстенберга.

Если у вас есть идеи других первоапрельских доказательств, предлагайте в комментариях!

Date: 2010-04-03 05:31 pm (UTC)
From: [identity profile] arcbishop.livejournal.com
ок, говорится что оно должно делиться на простое не из набора. какая разница? Вопрос не об этом был.

January 2026

S M T W T F S
    1 2 3
4 5 6 7 8 910
11 121314151617
18192021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 12th, 2026 06:01 am
Powered by Dreamwidth Studios