категории (математическое)
Nov. 11th, 2010 06:08 pmПо мотивам нескольких жарких дебатов в ЖЖ третий день размышляю праздно о том, есть ли реальная возможность объяснить, что такое теория категорий и чем она занимается, далеким от математики людям. Уже несколько раз решал, что все-таки может быть можно, а потом передумывал и приходил к выводу, что никак.
Мне кажется, что основная проблема тут в том, что представление широкой публики о математике не включает в себя ни в каком виде понятие аксиоматической структуры. Самое близкое к этому, что есть - это идея неевклидовой геометрии, но она недостаточно развита (в популярном представлении), чтобы можно было взять и сразу так говорить о пространстве как объекте. То есть перед тем как говорить что-то о категориях, совершенно необходимо что-то говорить о полях или о группах, например. Постараться - в этом смысле - перенести слушателя в ранний 20-й век из раннего 19-го. Но уже на этой стадии слишком легко этого слушателя попросту потерять, мне кажется.
Есть ли удачные попытки объяснить категории неспециалистам? Насколько это возможно?
Мне кажется, что основная проблема тут в том, что представление широкой публики о математике не включает в себя ни в каком виде понятие аксиоматической структуры. Самое близкое к этому, что есть - это идея неевклидовой геометрии, но она недостаточно развита (в популярном представлении), чтобы можно было взять и сразу так говорить о пространстве как объекте. То есть перед тем как говорить что-то о категориях, совершенно необходимо что-то говорить о полях или о группах, например. Постараться - в этом смысле - перенести слушателя в ранний 20-й век из раннего 19-го. Но уже на этой стадии слишком легко этого слушателя попросту потерять, мне кажется.
Есть ли удачные попытки объяснить категории неспециалистам? Насколько это возможно?
no subject
Date: 2010-11-11 06:56 pm (UTC)no subject
Date: 2010-11-11 08:02 pm (UTC)Математическая-в-узком-смысле сторона вопроса сводится к тому, что всякую группу можно представить как группу преобразований, но многими разными способами. Поэтому я предпочитаю считать, что группа -- это одно, категория ее представлений преобразованиями чего-то там -- это другое, а никакого выделенного представления, с которым имело бы смысл отождествлять группу, нет.
no subject
Date: 2010-11-11 08:24 pm (UTC)(P.S. Конечно, я первый предложу вам при оценке этого моего мнение держать в уме, кто был Арнольд, а кто я)
no subject
Date: 2010-11-11 09:34 pm (UTC)no subject
Date: 2010-11-11 10:51 pm (UTC)Группы обычно возникают в реальной математической практике как группы трансформаций. Но тем не менее, надо также понимать, например, целые числа как группу или работать с мультипликативной группой поля. В обоих случаях эти группы можно представить как группы трансформаций, но я не вижу, почему это представление более естественно и проще, чем немедленно-алгебраическое; по-моему, оно менее естественно и сложнее.