категории (математическое)
Nov. 11th, 2010 06:08 pmПо мотивам нескольких жарких дебатов в ЖЖ третий день размышляю праздно о том, есть ли реальная возможность объяснить, что такое теория категорий и чем она занимается, далеким от математики людям. Уже несколько раз решал, что все-таки может быть можно, а потом передумывал и приходил к выводу, что никак.
Мне кажется, что основная проблема тут в том, что представление широкой публики о математике не включает в себя ни в каком виде понятие аксиоматической структуры. Самое близкое к этому, что есть - это идея неевклидовой геометрии, но она недостаточно развита (в популярном представлении), чтобы можно было взять и сразу так говорить о пространстве как объекте. То есть перед тем как говорить что-то о категориях, совершенно необходимо что-то говорить о полях или о группах, например. Постараться - в этом смысле - перенести слушателя в ранний 20-й век из раннего 19-го. Но уже на этой стадии слишком легко этого слушателя попросту потерять, мне кажется.
Есть ли удачные попытки объяснить категории неспециалистам? Насколько это возможно?
Мне кажется, что основная проблема тут в том, что представление широкой публики о математике не включает в себя ни в каком виде понятие аксиоматической структуры. Самое близкое к этому, что есть - это идея неевклидовой геометрии, но она недостаточно развита (в популярном представлении), чтобы можно было взять и сразу так говорить о пространстве как объекте. То есть перед тем как говорить что-то о категориях, совершенно необходимо что-то говорить о полях или о группах, например. Постараться - в этом смысле - перенести слушателя в ранний 20-й век из раннего 19-го. Но уже на этой стадии слишком легко этого слушателя попросту потерять, мне кажется.
Есть ли удачные попытки объяснить категории неспециалистам? Насколько это возможно?
no subject
Date: 2010-11-15 10:05 pm (UTC)no subject
Date: 2010-11-16 03:23 am (UTC)Алгебраические K_0 и K_1 тоже несложные (по крайней мере определения) -- если человек алгебраист, а топологии наоборот совсем не знает, то, может, ему их и легче понять будет. А вот дальше (начиная с K_3, насколько я понимаю, для K_2 тоже есть отдельное определение) уже сложнее, и там уже топология завязана.
Вообще-то я в этом совсем не специалист, так, немножко книжки почитала.