Эта запись продолжает предыдущую "о литрах, людях и умножении" - начните с нее, если еще не читали.
Сейчас я расскажу вам, что я лично для себя нового понял из всей этой истории. Не знаю, как для вас, а для меня это понимание было совершенно неожиданным, даже ошеломительным. Я думал, что все понимаю в задаче про 18 литров и вычислении размерностей, а оказалось, что самое важное понимаю не до конца.
Я сидел и читал довольно долго отрывки из разных учебников арифметики 19 века вчера, некоторые из которых процитировал в прошлой записи. И все не мог понять, зачем же им нужны эти странные правила, что только множимое может быть конкретным (литры, люди, метры, доллары), а множитель обязательно абстрактным (разы)? Ведь действительно, самый простой способ записать пример с литрами, чтобы все размерности сходились - это
"2л/ч * 9ч = 18л". Тут все учтено и все логично, и ведь сказано в условии, что по два литра на человека. Или возьмите другой тривиальный пример, который приводили: машина едет 2 часа со скоростью 60 км/ч. Сколько она проехала? Понятно же, что 2ч * 60км/ч = 60км/ч * 2ч = 120км, порядок значения не имеет, часы в любом случае сокращаются и размерности обоих множителей важны для этого. А если по этим книгам 19 века, то непонятно даже, как это записать логично. Почему же они так извращались?
Я вам сейчас задам несколько риторических вопросов, а вы в них вдумайтесь, как следует, не отвергайте как глупые сразу, ладно?
Машина едет со скоростью 60 километров в час. Или, как мы записываем, 60 км/ч. Единица измерения - единица скорости - км/ч.
Скажите, друзья, а что это такое - поделить километр на час? Какой у этого действия смысл? Когда это вы такое видели? Я знаю, что такое поделить километр на 10 равных частей, например. Поделить пирог на три куска. Поделить 18 на 3. Это все я понимаю. А что такое "поделить километр на час"?
Фермер продал 9 покупателям по 2 литра на человека, мы записываем 2 л/чел * 9чел = 18л. Извините, а что это такое "л/чел"? Как это - поделить литр на человека? Как вы себе такое представляете?
Я знаю, что такое километр в час, это значит, что одному часу соответствует один километр. Но я не знаю, что такое километр поделить на час. Я знаю, что такое литр на человека, это значит, что один человек получает один литр. Но я не знаю, что такое литр поделить на человека, если пользоваться тем понятием 'деление', которое мы знаем из арифметики. То, в котором можно поделить пирог на троих или 10 на 2.
Но мы говорим вслух "километр в час", а записываем км/ч. Говорим вслух "литр на человека", а записываем л/ч. Я осознал, что я это делаю, не задумываясь ни на секунду о том, что это несколько разные вещи. Я предлагаю вам продумать это, как следует - ведь это прекрасно совершенно, мы постоянно пишем бессмыслицу, не задумываясь об этом! (я преувеличиваю ради риторики, это не бессмыслица, конечно, но можно так на это посмотреть). Все эти км/ч - что это такое вообще?
"км/ч" - это использование, повседневное и незаметное, метода размерностей. "км/ч" - это такой способ записать алгебраически обычное и понятное "километр в час", чтобы потом обычными правилами умножения этих абстрактных единиц все "правильно сократилось". Когда мы записываем 60 км/ч * 2 ч = 120 км, то все удобно сокращается, потому что мы так специально подстроили, записав км/ч в виде дроби. По природе своей в этом понятии скорости нет дроби в арифметическом смысле, нет деления, как мы его знаем из арифметики.
Каковы на самом деле единицы скорости, что такое "60 километров в час"? Это фиксирование определенного масштабирования, определенного способа совместить шкалу "километры" и шкалу "часы". В этом нет ничего от "деления", но у этой операции общие свойства с делением. Если мы берем сколько-то "километров в час" и умножаем их на сколько-то "часов", то в результате будут только "километры". Это раз. Более того, если мы изменим масштаб километров (перейдем в метры, скажем), то скорость изменится в одну сторону, а если изменим масштаб часов, то в другую (километры в метры - скорость увеличится; часы в секунды - уменьшится). Это ровно то, что происходит с делением: если делитель увеличить, частное увеличится, делимое увеличить - частное уменьшится. Выходит, что эту операцию фиксации масштаба, операцию "в,на", удобно записать в виде деления "км/ч", и все единицы размерности будут себя вести ровно так, как нам надо.
Но кто-то должен был это придумать. Это не очевидно "просто так", что можно взять и записать "километр в час" как км/ч. И я не знаю, когда это придумали, но в 19-м веке, судя по всему, так не делали! Я просмотрел, например, несколько учебников механики 19 века. Когда там описывается скорость, везде пишут "feet per second" итд., нигде ни разу не написано "f/s" или m/s или еще как. Нам кажется странным, что они так не писали, а с их точки зрения, вполне резонной, это же полный бред: как можно метры поделить на секунду, зачем писать такую чепуху???
(да, они умели, конечно, оперировать многочленами, и понимали, что такое x/y. Но зачем, с их точки зрения, относиться к конкретным метрам и секундам как к неизвестным величинам x и y? Опять-таки, бред какой-то).
В "Британнике" за 1911 год я прочитал статью о единицах измерения, и там сказано, что метод размерностей впервые был сформулирован в 1822 году, в книге Фурье "Аналитическая теория тепла". Вот соответствующий раздел этой книги в английском переводе (раздел "General remarks"). Фурье объясняет там, что в каждом физическом уравнении размерности длины/времени/температуры/итд. с двух сторон должны быть одинаковыми, и этим удобно пользоваться. Но он не пишет, как написали бы мы сейчас, что если слева m/s^2, то и справа должно быть m/s^2. Он не делит метры на секунды! Он пишет, что в такой ситуации у длины есть экспонента +1 с обеих сторон уравнения, а у времени экспонента -2. И объясняет, что это значит, с точки зрения перехода на другие единицы (скажем, если экспонента длины +1, то увеличив длину в 10 раз, мы увеличим значение в 10 раз, а если -1, то уменьшим в 10 раз). Но ему не приходит в голову взять эти единицы размерности и записать их делением (или умножением!). Это определенный дополнительный абстрактный шаг, который кто-то когда-то придумал позже, возможно, в конце 19-го века или даже начале 20-го. Я бы хотел проследить, кто и когда (если у вас есть идеи, поделитесь).
И вот это меня ошеломило, на самом деле - что столь очевидное для меня км/ч или л/чел или что угодно еще на самом деле даже в конце 19-го века не использовалось широко, и всего за последние 100 лет так твердо вошло в наш математический язык, что школьники сейчас пользуются этим, не задумываясь ни на секунду.
Но вот что следует признать из всего этого, и опять-таки мне это было нетривиально понять - что как минимум школьникам в младших классах, которым только объясняют, что такое умножение, объяснять "2 л/чел * 9 чел" было бы совершенно неправильно. Нам эти 2л/чел кажутся совершенно прозрачным способом написать "2 литра на человека", но на самом деле это нетривиальная абстракция (до которой в 19-м веке не додумались!), в определенном смысле "нечестное" использование деления - которого эти школьники вообще еще не знают - для того, чтобы сошлись размерности. Это не значит, что я согласен с защитниками того самого учителя, нет; все равно и 2*9, и 9*2 надо считать правильным ответом. Но до того, как я обо всем этом как следует подумал, я бы наивно предложил объяснить детям про 2л/чел, а теперь понимаю, что это куда сложнее, чем материал "что такое умножение", который они проходят.
Сейчас я расскажу вам, что я лично для себя нового понял из всей этой истории. Не знаю, как для вас, а для меня это понимание было совершенно неожиданным, даже ошеломительным. Я думал, что все понимаю в задаче про 18 литров и вычислении размерностей, а оказалось, что самое важное понимаю не до конца.
Я сидел и читал довольно долго отрывки из разных учебников арифметики 19 века вчера, некоторые из которых процитировал в прошлой записи. И все не мог понять, зачем же им нужны эти странные правила, что только множимое может быть конкретным (литры, люди, метры, доллары), а множитель обязательно абстрактным (разы)? Ведь действительно, самый простой способ записать пример с литрами, чтобы все размерности сходились - это
"2л/ч * 9ч = 18л". Тут все учтено и все логично, и ведь сказано в условии, что по два литра на человека. Или возьмите другой тривиальный пример, который приводили: машина едет 2 часа со скоростью 60 км/ч. Сколько она проехала? Понятно же, что 2ч * 60км/ч = 60км/ч * 2ч = 120км, порядок значения не имеет, часы в любом случае сокращаются и размерности обоих множителей важны для этого. А если по этим книгам 19 века, то непонятно даже, как это записать логично. Почему же они так извращались?
Я вам сейчас задам несколько риторических вопросов, а вы в них вдумайтесь, как следует, не отвергайте как глупые сразу, ладно?
Машина едет со скоростью 60 километров в час. Или, как мы записываем, 60 км/ч. Единица измерения - единица скорости - км/ч.
Скажите, друзья, а что это такое - поделить километр на час? Какой у этого действия смысл? Когда это вы такое видели? Я знаю, что такое поделить километр на 10 равных частей, например. Поделить пирог на три куска. Поделить 18 на 3. Это все я понимаю. А что такое "поделить километр на час"?
Фермер продал 9 покупателям по 2 литра на человека, мы записываем 2 л/чел * 9чел = 18л. Извините, а что это такое "л/чел"? Как это - поделить литр на человека? Как вы себе такое представляете?
Я знаю, что такое километр в час, это значит, что одному часу соответствует один километр. Но я не знаю, что такое километр поделить на час. Я знаю, что такое литр на человека, это значит, что один человек получает один литр. Но я не знаю, что такое литр поделить на человека, если пользоваться тем понятием 'деление', которое мы знаем из арифметики. То, в котором можно поделить пирог на троих или 10 на 2.
Но мы говорим вслух "километр в час", а записываем км/ч. Говорим вслух "литр на человека", а записываем л/ч. Я осознал, что я это делаю, не задумываясь ни на секунду о том, что это несколько разные вещи. Я предлагаю вам продумать это, как следует - ведь это прекрасно совершенно, мы постоянно пишем бессмыслицу, не задумываясь об этом! (я преувеличиваю ради риторики, это не бессмыслица, конечно, но можно так на это посмотреть). Все эти км/ч - что это такое вообще?
"км/ч" - это использование, повседневное и незаметное, метода размерностей. "км/ч" - это такой способ записать алгебраически обычное и понятное "километр в час", чтобы потом обычными правилами умножения этих абстрактных единиц все "правильно сократилось". Когда мы записываем 60 км/ч * 2 ч = 120 км, то все удобно сокращается, потому что мы так специально подстроили, записав км/ч в виде дроби. По природе своей в этом понятии скорости нет дроби в арифметическом смысле, нет деления, как мы его знаем из арифметики.
Каковы на самом деле единицы скорости, что такое "60 километров в час"? Это фиксирование определенного масштабирования, определенного способа совместить шкалу "километры" и шкалу "часы". В этом нет ничего от "деления", но у этой операции общие свойства с делением. Если мы берем сколько-то "километров в час" и умножаем их на сколько-то "часов", то в результате будут только "километры". Это раз. Более того, если мы изменим масштаб километров (перейдем в метры, скажем), то скорость изменится в одну сторону, а если изменим масштаб часов, то в другую (километры в метры - скорость увеличится; часы в секунды - уменьшится). Это ровно то, что происходит с делением: если делитель увеличить, частное увеличится, делимое увеличить - частное уменьшится. Выходит, что эту операцию фиксации масштаба, операцию "в,на", удобно записать в виде деления "км/ч", и все единицы размерности будут себя вести ровно так, как нам надо.
Но кто-то должен был это придумать. Это не очевидно "просто так", что можно взять и записать "километр в час" как км/ч. И я не знаю, когда это придумали, но в 19-м веке, судя по всему, так не делали! Я просмотрел, например, несколько учебников механики 19 века. Когда там описывается скорость, везде пишут "feet per second" итд., нигде ни разу не написано "f/s" или m/s или еще как. Нам кажется странным, что они так не писали, а с их точки зрения, вполне резонной, это же полный бред: как можно метры поделить на секунду, зачем писать такую чепуху???
(да, они умели, конечно, оперировать многочленами, и понимали, что такое x/y. Но зачем, с их точки зрения, относиться к конкретным метрам и секундам как к неизвестным величинам x и y? Опять-таки, бред какой-то).
В "Британнике" за 1911 год я прочитал статью о единицах измерения, и там сказано, что метод размерностей впервые был сформулирован в 1822 году, в книге Фурье "Аналитическая теория тепла". Вот соответствующий раздел этой книги в английском переводе (раздел "General remarks"). Фурье объясняет там, что в каждом физическом уравнении размерности длины/времени/температуры/итд. с двух сторон должны быть одинаковыми, и этим удобно пользоваться. Но он не пишет, как написали бы мы сейчас, что если слева m/s^2, то и справа должно быть m/s^2. Он не делит метры на секунды! Он пишет, что в такой ситуации у длины есть экспонента +1 с обеих сторон уравнения, а у времени экспонента -2. И объясняет, что это значит, с точки зрения перехода на другие единицы (скажем, если экспонента длины +1, то увеличив длину в 10 раз, мы увеличим значение в 10 раз, а если -1, то уменьшим в 10 раз). Но ему не приходит в голову взять эти единицы размерности и записать их делением (или умножением!). Это определенный дополнительный абстрактный шаг, который кто-то когда-то придумал позже, возможно, в конце 19-го века или даже начале 20-го. Я бы хотел проследить, кто и когда (если у вас есть идеи, поделитесь).
И вот это меня ошеломило, на самом деле - что столь очевидное для меня км/ч или л/чел или что угодно еще на самом деле даже в конце 19-го века не использовалось широко, и всего за последние 100 лет так твердо вошло в наш математический язык, что школьники сейчас пользуются этим, не задумываясь ни на секунду.
Но вот что следует признать из всего этого, и опять-таки мне это было нетривиально понять - что как минимум школьникам в младших классах, которым только объясняют, что такое умножение, объяснять "2 л/чел * 9 чел" было бы совершенно неправильно. Нам эти 2л/чел кажутся совершенно прозрачным способом написать "2 литра на человека", но на самом деле это нетривиальная абстракция (до которой в 19-м веке не додумались!), в определенном смысле "нечестное" использование деления - которого эти школьники вообще еще не знают - для того, чтобы сошлись размерности. Это не значит, что я согласен с защитниками того самого учителя, нет; все равно и 2*9, и 9*2 надо считать правильным ответом. Но до того, как я обо всем этом как следует подумал, я бы наивно предложил объяснить детям про 2л/чел, а теперь понимаю, что это куда сложнее, чем материал "что такое умножение", который они проходят.
Re: Поделить 1 литр на человека очень просто – дать этот
Date: 2013-04-19 03:20 am (UTC)Осталось только сформулировать задачу, где есть 4 человека и 3 холодильника и каждому дали (в холодильник положили) по 2 яблока.
А потом попросить расставить размерности в
2*(4+3)
Re: Поделить 1 литр на человека очень просто – дать этот
Date: 2013-04-19 10:46 pm (UTC)Есть фундаментальные модели, называемые "теориями", например классическая механика, электродинамика, статистическая физика и т.д. В этих моделях есть стандартные величины, у которых есть стандартные и общепринятые размерности, как “основные” (длина, время, масса и т.д.), так и “производные” (скорость, сила и т.д.). Эти размерности установлены "раз и навсегда" (в данной системе единиц, например СИ или СГС), в том смысле, что во всех задач в рамках соответствующих теорий они заранее известны и не могут меняться произвольно. Разные размерности складывать нельзя, например нельзя складывать массу и длину.
В некотором смысле, можно сказать, что стандартные физические размерности “живут” в непересекающихся множествах. Например, длина живет в евклидовом пространстве R3, т.е. в множестве точек с введенной в нем евклидовой метрикой. Импульс живет в импульсном пространстве импульсов частиц и т.д. В классической механике время живет в пространстве (линии) отдельном от длины, но в СТО они в каком-то смысле объединяются в единое пространство Минковского, хотя размерности у них будут все равно разные, поскольку у времени будет коэффициент перевода – скорость света. Единица измерения величины – выбранная единичная длина в пространстве, в котором живет данная величина.
В то же время, есть и частные прикладные задачи, в которых в рамках соответствующей математической модели мы можем назначать размерности, которые будут удобны при решении этой задачи. Размерности "люди" нет в стандартных системах единиц, но только потому, что в большинстве задач людей можно считать безразмерными. Однако в некоторых задачах вполне удобно (и ничего не запрещает) использовать размерность "люди", например в месячном burn rate на человека (допустим 3 000 доллар/чел*месяц) или в количестве времени необходимого для выполнения задачи в человека-часах (допустим 10 000 чел*часов). Заодно и "валюта" здесь появились, тоже не стандартная физическая размерность, но удобная в данных прикладных задачах. Размерности "люди" и "валюта" здесь выражаются в единицах измерения "человек" и "доллары", но могут быть переведы, например, в единицы измерения "бригады" (про которые мы договариваемся, что в них, допустим, 10 человек) или "рубли" (которые пересчитываются в "доллары" по обменному курсу).
Разница со стандартными размерностями в том, что размерность “люди” не является заранее заданной во всех задачах. Если в какой-то прикладной задаче люди и холодильники выступают как равноправные объекты в которые кладут яблоки, то вместо размерностей “люди” и “холодильники” надо использовать размерность, например, “объекты”. В этой задаче в соответствующей математической модели люди и холодильники “живут в одном пространстве”, т.е. будет единое множество “объектов”, равноправными элементами которых будут “люди” и “холодильники”.
Re: Поделить 1 литр на человека очень просто – дать этот
Date: 2013-04-19 10:47 pm (UTC)Может ли быть удобно использовать размерность “объекты”? Да, например когда у данной размерности есть разные единицы измерения, и мы хотим получать ответ в разных единицах измерения. Например, если бы задача звучала так: “есть 4 человека и 3 холодильника и каждому дали (в холодильник положили) по 20 яблок. При этом у каждого человека есть 4 кармана, а в каждом холодильнике есть 4 отделения. В каждом человеке и холодильнике яблоки разместили равномерно по карманам и отделениям. Сколько всего было яблок, и сколько всего яблок в каждом кармане и отделении?”.
В этой задаче у размерности “объекты” кроме исходной единицы измерения “объекты” будет единица измерения “подобъекты”. Переходить между “объектами” и “подобъектами” можно с помощью константы перехода 4, т.е. 1 “объект”= 4 “подобъекта”. В итоге мы получим:
Всего яблок: 20 яблок/объект * (4 объекта + 3 объекта) = 140 яблок.
Яблок на объект: 20 яблок/объект.
Яблок на подобъект: 20 яблок/объект = 20 яблок/4 подобъекта = 5 яблок/подобъект.
А что было бы, если бы в последней задаче у людей и холодильников было разное количество карманов/отделений, и нам все равно было бы нужно посчитать количество яблок на каждый карман или отделение? Тогда люди и холодильники уже не могли бы жить в одном множестве “объектов”, поскольку они не были бы равноправными элементами в этом множестве. Соответственно, пришлось бы ввести отдельные размерности “люди”, с единицами измерений “человек” и “карман” (например, 1 человек = 4 кармана), и “холодильники”, с единицами измерений “холодильник” и “отделение” (например, 1 “холодильник” = “10 отделений”). При этом для вычисления “яблок на карман” и “яблок на отделение” мы 4 и 3 складывать уже не могли бы, и были бы две отдельные задачи про карманы и про отделения (эти задачи и их решения очевидны и расписывать их уже не буду).
См. также http://biglebowsky.livejournal.com/80620.html?thread=1132524#t1132524 и http://biglebowsky.livejournal.com/80620.html?thread=1132780#t1132780