Когда математик говорит: пусть G - абелева группа..., какую картинку он видит в своём воображении?
Вообще, когда математики (и не-математики) рассуждают об абстрактных структурах, какого рода внутренними картинками они пользуются для того, чтобы помочь себе?
Мне всегда этот вопрос казался очень интересным и, пожалуй, важным для понимания процесса абстрактного мышления. Да и о практическом аспекте можно подумать. Может быть - ведь может быть? - какие-то способы внутренней визуализации объективно удобнее, лучше, полезнее, чем другие. Возможно, эти способы можно описать и им можно научиться. А есть ли математики, которые вообще не используют ничего подобного, не "видят" перед собой никаких картинок? И если есть, можем ли мы из этого сделать какие-то выводы о процессе их математического мышления?
Но я так и не встретил ни разу подробного описания или изучения этого вопроса. Может быть, кто-нибудь знает, изучали ли это профессионально и систематически (скажем, психологи или кто ещё)? Всё, что мне встречалось - это редкие частные описания. Например, Ричард Фейнман интересно описывает в своей как-бы автобиографии, как он использовал внутренние "картинки" (разного рода геометрические фигуры, к-е меняли цвет, обрастали щупальцами и т.п.), когда был студентом-физиком и обсуждал теорию множеств со студентами-математиками.
Какой-то другой математик (забыл, кто) описывал, как он видит дифференциальные уравнения в цвете (каждая переменная имеет свой цвет).
Сам я не очень много могу добавить о себе лично. У меня нет цветного абстрактного видения, хотя сгущение тёмного тона играет важную роль (т.е. та часть картинки, к-я более важна или на которой сфокусировано внимание, темнее других). Числовую ось я вижу горизонтальной, когда речь идёт о геометрии или анализе; но если речь идёт о теории множеств, ординалах и т.п., она скорее направлена косо, и уходит вправо вверх, в отдельных случаях даже вертикально (так удобней бывает представить "ось" всех ординалов и кардиналов, включая бесконечные; почему? - не знаю). Поле (или кольцо вообще) для меня - бесформенное облако, внутри которого выделяется тёмная ось натуральных чисел, прыгающих одно за другим -- или непрерывная, а не дискретная, копия рациональных чисел. Стоит перейти к векторному пространству, как само поле сплющивается и становится двумерным, а пространство, на нём основанное - трёхмерным облаком, с нитями между ними; поле почему-то левее и ниже самого пространства. Модель (в мат. логике) - всегда что-то плоское и обширное, с точками, означающими элементы, в которые прыгают стрелки из большого неограниченного уходящего в бесконечость куска пространства, содержащего термы данного языка. Между точками-элементами прыгают стрелки, означающие реляции и функции. Элементы-константы всегда темнее и отчётливей других.
Это просто несколько примеров того, что первым в голову пришло -- наверное, недостаточно детализованных (чем точнее пытаешься вспомнить, тем больше картинка расплывается или теряешь в ней уверенность).
Если кто-то (математик или не-математик) захочет добавить свои впечатления и ощущения абстрактных структур, или любые соображения по этому поводу, добро пожаловать. Вся эта тема кажется мне исключительно интересной и малоизученной.
Вообще, когда математики (и не-математики) рассуждают об абстрактных структурах, какого рода внутренними картинками они пользуются для того, чтобы помочь себе?
Мне всегда этот вопрос казался очень интересным и, пожалуй, важным для понимания процесса абстрактного мышления. Да и о практическом аспекте можно подумать. Может быть - ведь может быть? - какие-то способы внутренней визуализации объективно удобнее, лучше, полезнее, чем другие. Возможно, эти способы можно описать и им можно научиться. А есть ли математики, которые вообще не используют ничего подобного, не "видят" перед собой никаких картинок? И если есть, можем ли мы из этого сделать какие-то выводы о процессе их математического мышления?
Но я так и не встретил ни разу подробного описания или изучения этого вопроса. Может быть, кто-нибудь знает, изучали ли это профессионально и систематически (скажем, психологи или кто ещё)? Всё, что мне встречалось - это редкие частные описания. Например, Ричард Фейнман интересно описывает в своей как-бы автобиографии, как он использовал внутренние "картинки" (разного рода геометрические фигуры, к-е меняли цвет, обрастали щупальцами и т.п.), когда был студентом-физиком и обсуждал теорию множеств со студентами-математиками.
Какой-то другой математик (забыл, кто) описывал, как он видит дифференциальные уравнения в цвете (каждая переменная имеет свой цвет).
Сам я не очень много могу добавить о себе лично. У меня нет цветного абстрактного видения, хотя сгущение тёмного тона играет важную роль (т.е. та часть картинки, к-я более важна или на которой сфокусировано внимание, темнее других). Числовую ось я вижу горизонтальной, когда речь идёт о геометрии или анализе; но если речь идёт о теории множеств, ординалах и т.п., она скорее направлена косо, и уходит вправо вверх, в отдельных случаях даже вертикально (так удобней бывает представить "ось" всех ординалов и кардиналов, включая бесконечные; почему? - не знаю). Поле (или кольцо вообще) для меня - бесформенное облако, внутри которого выделяется тёмная ось натуральных чисел, прыгающих одно за другим -- или непрерывная, а не дискретная, копия рациональных чисел. Стоит перейти к векторному пространству, как само поле сплющивается и становится двумерным, а пространство, на нём основанное - трёхмерным облаком, с нитями между ними; поле почему-то левее и ниже самого пространства. Модель (в мат. логике) - всегда что-то плоское и обширное, с точками, означающими элементы, в которые прыгают стрелки из большого неограниченного уходящего в бесконечость куска пространства, содержащего термы данного языка. Между точками-элементами прыгают стрелки, означающие реляции и функции. Элементы-константы всегда темнее и отчётливей других.
Это просто несколько примеров того, что первым в голову пришло -- наверное, недостаточно детализованных (чем точнее пытаешься вспомнить, тем больше картинка расплывается или теряешь в ней уверенность).
Если кто-то (математик или не-математик) захочет добавить свои впечатления и ощущения абстрактных структур, или любые соображения по этому поводу, добро пожаловать. Вся эта тема кажется мне исключительно интересной и малоизученной.
no subject
Date: 2002-06-10 03:22 pm (UTC)Соответственно, пятимерное -- копии этой четырехмерной "прямой", застилающие вертикальную стену. Шестимерное -- это как бы трехмерное пространство, каждый "воксель" которого -- это трехмерный "ящичек".
Соответственно, пятимерная сфера представляется себе довольно легко и оказывается совсем не "круглой" :) (если я не ошибаюсь) (круглые только её трехмерные проекции)
Видение 4.-мерного пространства.
Date: 2002-08-18 01:18 pm (UTC)Если я долго представляю себе 4.-мерное пространство (в виде ящичков или сечений) или ОСОБЕННО пространство-время, иногда возникает "заскок". Я как-бы на секунду представляю себе всю 4.-мерную форму в комплексе. (Картинка не поддается описанию - только сумбур какой-то выходит.) И через мгновение, это состояние изчезает очень резко, как будто я коснулся горячей сковородки и тут же отдернул руку. Очень странное ощущение. Возникает ТОЛЬКО ночью после 2-4 часового чтения книг по подходящей тематике. После этого состояния я не сразу могу говорить. Около 2 секунд после такого видения я нахожусь в состоянии аута. То есть не могу мыслить словами - только образами. У кого-нибудь такое бывает?
Re: Видение 4.-мерного пространства.
Date: 2002-08-18 02:16 pm (UTC)