красота (математика)
Nov. 20th, 2002 04:55 amБуквально в последние дни, очень понравились:
1. Красивый объект: группа Григорчука. Это определённая подгруппа группы автоморфизмов бесконечного двоичного дерева. Мне про неё рассказали сегодня. Очень красивая штука. Довольно элементарно и элегантно доказывается, что это 2-группа (каждый элемент имеет порядок степень двойки), при этом сама она бесконечна; т.е. является простым и красивым контрпримером к одной из гипотез Бернсайда: той, что гласит, что каждая конечно порождённая группа, в которой все элементы имеют конечный порядок, сама конечна.
2. Красивое доказательство: доказательство Шелаха того факта, что функция роста чисел ван дер Вардена - примитивная рекурсивная. Ссылка на статью Шелаха есть на той же странице. Очень простое полностью комбинаторное док-во, которое заодно доказывает новым способом само существование чисел ван дер Вардена, не используя обычную для этого двойную индукцию.
3. Красивый подход: статья Патнэма с альтернативным док-вом теоремы о неполноте Гёделя, придуманном Крипке. Доказательство полностью алгебраическое, использует нестандартные модели арифметики Пеано, причём довольно элементарным образом. Саму нестандартную модель можно при желании построить с помощью ультрафильтров, избежав таким образом использования теоремы о компактности и сделав всё доказательство ещё более алгебраическим по духу. В свежем Notre Dame Journal of Formal Logic. Вообще-то я ещё не уверен окончательно в том, что понял все подробности; надо перечитать. Но очень красиво.
1. Красивый объект: группа Григорчука. Это определённая подгруппа группы автоморфизмов бесконечного двоичного дерева. Мне про неё рассказали сегодня. Очень красивая штука. Довольно элементарно и элегантно доказывается, что это 2-группа (каждый элемент имеет порядок степень двойки), при этом сама она бесконечна; т.е. является простым и красивым контрпримером к одной из гипотез Бернсайда: той, что гласит, что каждая конечно порождённая группа, в которой все элементы имеют конечный порядок, сама конечна.
2. Красивое доказательство: доказательство Шелаха того факта, что функция роста чисел ван дер Вардена - примитивная рекурсивная. Ссылка на статью Шелаха есть на той же странице. Очень простое полностью комбинаторное док-во, которое заодно доказывает новым способом само существование чисел ван дер Вардена, не используя обычную для этого двойную индукцию.
3. Красивый подход: статья Патнэма с альтернативным док-вом теоремы о неполноте Гёделя, придуманном Крипке. Доказательство полностью алгебраическое, использует нестандартные модели арифметики Пеано, причём довольно элементарным образом. Саму нестандартную модель можно при желании построить с помощью ультрафильтров, избежав таким образом использования теоремы о компактности и сделав всё доказательство ещё более алгебраическим по духу. В свежем Notre Dame Journal of Formal Logic. Вообще-то я ещё не уверен окончательно в том, что понял все подробности; надо перечитать. Но очень красиво.
Re: Извините, снова не в тему
Date: 2002-11-20 07:43 am (UTC)http://www.yandex.ru/yandsearch?rpt=rad&text=%EF%FF%F2%FC-%F6%E2%E5%F2%EE%E2-%F0%E0%E4%F3%E3%E8
А вот Китай на примере не менее древнего Трактата Перемен:
http://www.regina.ru/kozhuhar/main1.html
Кстаит, китайская радуга могла быть вообще белой:
http://chinahistory.narod.ru/zhanguoce.htm
Да и должна быть такой, по скольку Дао Дэ Цзин не устанавливает рамок деления Целого, утверждая лишь что они все взаимопогашаются, как цвета радуги сливаются в белый.