о непротиворечивости
May. 1st, 2004 05:30 pmБрайан Форд, докторант из MIT, опубликовал интересный препринт, в котором он строит частичные модели ZF (теории множеств Цермело-Франкеля) внутри ZF. Одним из его результатов является доказательство непротиворечивости ZF внутри ZF. Скорее всего, в этом есть ошибка, но как минимум не тривиальная — автор не шарлатан и не сумасшедший, статья написана хорошо и вдумчиво, и использует действительно необычный, и возможно интересный, метод конструирования моделей. Я только бегло просмотрел её; очень хочется распечатать и проштудировать как следует, но совершенно не могу на это сейчас выделить времени, очень жаль. Сейчас её обсуждают в рассылке FOM; пока что Robert Solovay нашёл несколько небольших погрешностей, которые кажутся исправимыми, но всё ещё впереди.
Можно помечтать о том, что будет, если результат окажется корректным (хоть это очень маловероятно). Согласно второй теореме о неполноте Гёделя, достаточно богатая формальная система (ZF такой является, несомненно) не может доказать своей непротиворечивости, если она непротиворечива (если формальная система противоречива, то она может доказать вообще всё что угодно, любое утверждение, включая, парадоксальным образом, утверждение, выражающее её непротиворечивость). Таким образом, если доказательство Форда верно, из этого будет следовать, что ZF противоречива. Это в свою очередь будет ужасным ударом по основаниям математики и логики, последствия которого трудно предсказать (хотя большинство математиков скорее всего не обратят на него особого внимания, т.к. не интересуются логикой или основаниями математики).
Можно помечтать о том, что будет, если результат окажется корректным (хоть это очень маловероятно). Согласно второй теореме о неполноте Гёделя, достаточно богатая формальная система (ZF такой является, несомненно) не может доказать своей непротиворечивости, если она непротиворечива (если формальная система противоречива, то она может доказать вообще всё что угодно, любое утверждение, включая, парадоксальным образом, утверждение, выражающее её непротиворечивость). Таким образом, если доказательство Форда верно, из этого будет следовать, что ZF противоречива. Это в свою очередь будет ужасным ударом по основаниям математики и логики, последствия которого трудно предсказать (хотя большинство математиков скорее всего не обратят на него особого внимания, т.к. не интересуются логикой или основаниями математики).
no subject
Date: 2004-05-02 10:06 pm (UTC)Кстати, насколько я знаю, читается все же "де Бранж" без "-ес" - во-первых, я слышал как его так называли те кто с ним лично общался, во-вторых, во французском языке окончание "es" немое.
Думаю, по-русски следует писать так, как читается (пишем же "Айвенго").
no subject
Date: 2004-05-03 10:13 am (UTC)A climate of skepticism had been created by the erroneous proof of the Bieberbach conjecture which had been announced in a Soviet journal. In fact several false proofs of the Bieberbach conjecture litter the historical landscape; and it was the general expectation that some subtle error would be found in the present argument.
To their surprise, the participants of the Leningrad Seminar in Geometric Function Theory became convinced of the validity of the argument during five sessions which took place in April and May. Each session lasted late into the evening and was interrupted only by a break for tea. Two members of the seminar, E. V. Emel'ianov and I. M. Milin, submitted written reports confirming the proof and presenting variants which they considered advantageous. In June, Professor de Branges worked with the seminar leader, Professor G. V. Kuz'mina, to consolidate the findings of the seminar. The resulting argument was accepted for release by Academician L. D. Faddeev, the director of the Leningrad Branch of the V. A. Steklov Mathematical Institute. The 21 page preprint is available both in Russian and in English.