avva: (Default)
[personal profile] avva
По мотивам нескольких жарких дебатов в ЖЖ третий день размышляю праздно о том, есть ли реальная возможность объяснить, что такое теория категорий и чем она занимается, далеким от математики людям. Уже несколько раз решал, что все-таки может быть можно, а потом передумывал и приходил к выводу, что никак.

Мне кажется, что основная проблема тут в том, что представление широкой публики о математике не включает в себя ни в каком виде понятие аксиоматической структуры. Самое близкое к этому, что есть - это идея неевклидовой геометрии, но она недостаточно развита (в популярном представлении), чтобы можно было взять и сразу так говорить о пространстве как объекте. То есть перед тем как говорить что-то о категориях, совершенно необходимо что-то говорить о полях или о группах, например. Постараться - в этом смысле - перенести слушателя в ранний 20-й век из раннего 19-го. Но уже на этой стадии слишком легко этого слушателя попросту потерять, мне кажется.

Есть ли удачные попытки объяснить категории неспециалистам? Насколько это возможно?

Date: 2010-11-11 04:58 pm (UTC)
From: [identity profile] posic.livejournal.com
Теория категорий бывает очень разная. Начиная от простейших понятий категории, функтора, естественного преобразования, универсального объекта, сопряженного функтора, и т.д., которые действительно обычно используются как язык. И кончая совершенно уже навороченными современными теориями locally accessible categories (или как там их), well-generated triangulated categories, нестрогими поликатегориями, и т.д. Со многими промежуточными остановками на этом пути.

Со вторым вашим абзацем я совершенно согласен.

December 2025

S M T W T F S
  123 4 56
78 9 10 11 1213
1415 1617181920
21 22 23 24 2526 27
28293031   

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Dec. 29th, 2025 08:16 pm
Powered by Dreamwidth Studios