Эта запись продолжает предыдущую "о литрах, людях и умножении" - начните с нее, если еще не читали.
Сейчас я расскажу вам, что я лично для себя нового понял из всей этой истории. Не знаю, как для вас, а для меня это понимание было совершенно неожиданным, даже ошеломительным. Я думал, что все понимаю в задаче про 18 литров и вычислении размерностей, а оказалось, что самое важное понимаю не до конца.
Я сидел и читал довольно долго отрывки из разных учебников арифметики 19 века вчера, некоторые из которых процитировал в прошлой записи. И все не мог понять, зачем же им нужны эти странные правила, что только множимое может быть конкретным (литры, люди, метры, доллары), а множитель обязательно абстрактным (разы)? Ведь действительно, самый простой способ записать пример с литрами, чтобы все размерности сходились - это
"2л/ч * 9ч = 18л". Тут все учтено и все логично, и ведь сказано в условии, что по два литра на человека. Или возьмите другой тривиальный пример, который приводили: машина едет 2 часа со скоростью 60 км/ч. Сколько она проехала? Понятно же, что 2ч * 60км/ч = 60км/ч * 2ч = 120км, порядок значения не имеет, часы в любом случае сокращаются и размерности обоих множителей важны для этого. А если по этим книгам 19 века, то непонятно даже, как это записать логично. Почему же они так извращались?
Я вам сейчас задам несколько риторических вопросов, а вы в них вдумайтесь, как следует, не отвергайте как глупые сразу, ладно?
Машина едет со скоростью 60 километров в час. Или, как мы записываем, 60 км/ч. Единица измерения - единица скорости - км/ч.
Скажите, друзья, а что это такое - поделить километр на час? Какой у этого действия смысл? Когда это вы такое видели? Я знаю, что такое поделить километр на 10 равных частей, например. Поделить пирог на три куска. Поделить 18 на 3. Это все я понимаю. А что такое "поделить километр на час"?
Фермер продал 9 покупателям по 2 литра на человека, мы записываем 2 л/чел * 9чел = 18л. Извините, а что это такое "л/чел"? Как это - поделить литр на человека? Как вы себе такое представляете?
Я знаю, что такое километр в час, это значит, что одному часу соответствует один километр. Но я не знаю, что такое километр поделить на час. Я знаю, что такое литр на человека, это значит, что один человек получает один литр. Но я не знаю, что такое литр поделить на человека, если пользоваться тем понятием 'деление', которое мы знаем из арифметики. То, в котором можно поделить пирог на троих или 10 на 2.
Но мы говорим вслух "километр в час", а записываем км/ч. Говорим вслух "литр на человека", а записываем л/ч. Я осознал, что я это делаю, не задумываясь ни на секунду о том, что это несколько разные вещи. Я предлагаю вам продумать это, как следует - ведь это прекрасно совершенно, мы постоянно пишем бессмыслицу, не задумываясь об этом! (я преувеличиваю ради риторики, это не бессмыслица, конечно, но можно так на это посмотреть). Все эти км/ч - что это такое вообще?
"км/ч" - это использование, повседневное и незаметное, метода размерностей. "км/ч" - это такой способ записать алгебраически обычное и понятное "километр в час", чтобы потом обычными правилами умножения этих абстрактных единиц все "правильно сократилось". Когда мы записываем 60 км/ч * 2 ч = 120 км, то все удобно сокращается, потому что мы так специально подстроили, записав км/ч в виде дроби. По природе своей в этом понятии скорости нет дроби в арифметическом смысле, нет деления, как мы его знаем из арифметики.
Каковы на самом деле единицы скорости, что такое "60 километров в час"? Это фиксирование определенного масштабирования, определенного способа совместить шкалу "километры" и шкалу "часы". В этом нет ничего от "деления", но у этой операции общие свойства с делением. Если мы берем сколько-то "километров в час" и умножаем их на сколько-то "часов", то в результате будут только "километры". Это раз. Более того, если мы изменим масштаб километров (перейдем в метры, скажем), то скорость изменится в одну сторону, а если изменим масштаб часов, то в другую (километры в метры - скорость увеличится; часы в секунды - уменьшится). Это ровно то, что происходит с делением: если делитель увеличить, частное увеличится, делимое увеличить - частное уменьшится. Выходит, что эту операцию фиксации масштаба, операцию "в,на", удобно записать в виде деления "км/ч", и все единицы размерности будут себя вести ровно так, как нам надо.
Но кто-то должен был это придумать. Это не очевидно "просто так", что можно взять и записать "километр в час" как км/ч. И я не знаю, когда это придумали, но в 19-м веке, судя по всему, так не делали! Я просмотрел, например, несколько учебников механики 19 века. Когда там описывается скорость, везде пишут "feet per second" итд., нигде ни разу не написано "f/s" или m/s или еще как. Нам кажется странным, что они так не писали, а с их точки зрения, вполне резонной, это же полный бред: как можно метры поделить на секунду, зачем писать такую чепуху???
(да, они умели, конечно, оперировать многочленами, и понимали, что такое x/y. Но зачем, с их точки зрения, относиться к конкретным метрам и секундам как к неизвестным величинам x и y? Опять-таки, бред какой-то).
В "Британнике" за 1911 год я прочитал статью о единицах измерения, и там сказано, что метод размерностей впервые был сформулирован в 1822 году, в книге Фурье "Аналитическая теория тепла". Вот соответствующий раздел этой книги в английском переводе (раздел "General remarks"). Фурье объясняет там, что в каждом физическом уравнении размерности длины/времени/температуры/итд. с двух сторон должны быть одинаковыми, и этим удобно пользоваться. Но он не пишет, как написали бы мы сейчас, что если слева m/s^2, то и справа должно быть m/s^2. Он не делит метры на секунды! Он пишет, что в такой ситуации у длины есть экспонента +1 с обеих сторон уравнения, а у времени экспонента -2. И объясняет, что это значит, с точки зрения перехода на другие единицы (скажем, если экспонента длины +1, то увеличив длину в 10 раз, мы увеличим значение в 10 раз, а если -1, то уменьшим в 10 раз). Но ему не приходит в голову взять эти единицы размерности и записать их делением (или умножением!). Это определенный дополнительный абстрактный шаг, который кто-то когда-то придумал позже, возможно, в конце 19-го века или даже начале 20-го. Я бы хотел проследить, кто и когда (если у вас есть идеи, поделитесь).
И вот это меня ошеломило, на самом деле - что столь очевидное для меня км/ч или л/чел или что угодно еще на самом деле даже в конце 19-го века не использовалось широко, и всего за последние 100 лет так твердо вошло в наш математический язык, что школьники сейчас пользуются этим, не задумываясь ни на секунду.
Но вот что следует признать из всего этого, и опять-таки мне это было нетривиально понять - что как минимум школьникам в младших классах, которым только объясняют, что такое умножение, объяснять "2 л/чел * 9 чел" было бы совершенно неправильно. Нам эти 2л/чел кажутся совершенно прозрачным способом написать "2 литра на человека", но на самом деле это нетривиальная абстракция (до которой в 19-м веке не додумались!), в определенном смысле "нечестное" использование деления - которого эти школьники вообще еще не знают - для того, чтобы сошлись размерности. Это не значит, что я согласен с защитниками того самого учителя, нет; все равно и 2*9, и 9*2 надо считать правильным ответом. Но до того, как я обо всем этом как следует подумал, я бы наивно предложил объяснить детям про 2л/чел, а теперь понимаю, что это куда сложнее, чем материал "что такое умножение", который они проходят.
Сейчас я расскажу вам, что я лично для себя нового понял из всей этой истории. Не знаю, как для вас, а для меня это понимание было совершенно неожиданным, даже ошеломительным. Я думал, что все понимаю в задаче про 18 литров и вычислении размерностей, а оказалось, что самое важное понимаю не до конца.
Я сидел и читал довольно долго отрывки из разных учебников арифметики 19 века вчера, некоторые из которых процитировал в прошлой записи. И все не мог понять, зачем же им нужны эти странные правила, что только множимое может быть конкретным (литры, люди, метры, доллары), а множитель обязательно абстрактным (разы)? Ведь действительно, самый простой способ записать пример с литрами, чтобы все размерности сходились - это
"2л/ч * 9ч = 18л". Тут все учтено и все логично, и ведь сказано в условии, что по два литра на человека. Или возьмите другой тривиальный пример, который приводили: машина едет 2 часа со скоростью 60 км/ч. Сколько она проехала? Понятно же, что 2ч * 60км/ч = 60км/ч * 2ч = 120км, порядок значения не имеет, часы в любом случае сокращаются и размерности обоих множителей важны для этого. А если по этим книгам 19 века, то непонятно даже, как это записать логично. Почему же они так извращались?
Я вам сейчас задам несколько риторических вопросов, а вы в них вдумайтесь, как следует, не отвергайте как глупые сразу, ладно?
Машина едет со скоростью 60 километров в час. Или, как мы записываем, 60 км/ч. Единица измерения - единица скорости - км/ч.
Скажите, друзья, а что это такое - поделить километр на час? Какой у этого действия смысл? Когда это вы такое видели? Я знаю, что такое поделить километр на 10 равных частей, например. Поделить пирог на три куска. Поделить 18 на 3. Это все я понимаю. А что такое "поделить километр на час"?
Фермер продал 9 покупателям по 2 литра на человека, мы записываем 2 л/чел * 9чел = 18л. Извините, а что это такое "л/чел"? Как это - поделить литр на человека? Как вы себе такое представляете?
Я знаю, что такое километр в час, это значит, что одному часу соответствует один километр. Но я не знаю, что такое километр поделить на час. Я знаю, что такое литр на человека, это значит, что один человек получает один литр. Но я не знаю, что такое литр поделить на человека, если пользоваться тем понятием 'деление', которое мы знаем из арифметики. То, в котором можно поделить пирог на троих или 10 на 2.
Но мы говорим вслух "километр в час", а записываем км/ч. Говорим вслух "литр на человека", а записываем л/ч. Я осознал, что я это делаю, не задумываясь ни на секунду о том, что это несколько разные вещи. Я предлагаю вам продумать это, как следует - ведь это прекрасно совершенно, мы постоянно пишем бессмыслицу, не задумываясь об этом! (я преувеличиваю ради риторики, это не бессмыслица, конечно, но можно так на это посмотреть). Все эти км/ч - что это такое вообще?
"км/ч" - это использование, повседневное и незаметное, метода размерностей. "км/ч" - это такой способ записать алгебраически обычное и понятное "километр в час", чтобы потом обычными правилами умножения этих абстрактных единиц все "правильно сократилось". Когда мы записываем 60 км/ч * 2 ч = 120 км, то все удобно сокращается, потому что мы так специально подстроили, записав км/ч в виде дроби. По природе своей в этом понятии скорости нет дроби в арифметическом смысле, нет деления, как мы его знаем из арифметики.
Каковы на самом деле единицы скорости, что такое "60 километров в час"? Это фиксирование определенного масштабирования, определенного способа совместить шкалу "километры" и шкалу "часы". В этом нет ничего от "деления", но у этой операции общие свойства с делением. Если мы берем сколько-то "километров в час" и умножаем их на сколько-то "часов", то в результате будут только "километры". Это раз. Более того, если мы изменим масштаб километров (перейдем в метры, скажем), то скорость изменится в одну сторону, а если изменим масштаб часов, то в другую (километры в метры - скорость увеличится; часы в секунды - уменьшится). Это ровно то, что происходит с делением: если делитель увеличить, частное увеличится, делимое увеличить - частное уменьшится. Выходит, что эту операцию фиксации масштаба, операцию "в,на", удобно записать в виде деления "км/ч", и все единицы размерности будут себя вести ровно так, как нам надо.
Но кто-то должен был это придумать. Это не очевидно "просто так", что можно взять и записать "километр в час" как км/ч. И я не знаю, когда это придумали, но в 19-м веке, судя по всему, так не делали! Я просмотрел, например, несколько учебников механики 19 века. Когда там описывается скорость, везде пишут "feet per second" итд., нигде ни разу не написано "f/s" или m/s или еще как. Нам кажется странным, что они так не писали, а с их точки зрения, вполне резонной, это же полный бред: как можно метры поделить на секунду, зачем писать такую чепуху???
(да, они умели, конечно, оперировать многочленами, и понимали, что такое x/y. Но зачем, с их точки зрения, относиться к конкретным метрам и секундам как к неизвестным величинам x и y? Опять-таки, бред какой-то).
В "Британнике" за 1911 год я прочитал статью о единицах измерения, и там сказано, что метод размерностей впервые был сформулирован в 1822 году, в книге Фурье "Аналитическая теория тепла". Вот соответствующий раздел этой книги в английском переводе (раздел "General remarks"). Фурье объясняет там, что в каждом физическом уравнении размерности длины/времени/температуры/итд. с двух сторон должны быть одинаковыми, и этим удобно пользоваться. Но он не пишет, как написали бы мы сейчас, что если слева m/s^2, то и справа должно быть m/s^2. Он не делит метры на секунды! Он пишет, что в такой ситуации у длины есть экспонента +1 с обеих сторон уравнения, а у времени экспонента -2. И объясняет, что это значит, с точки зрения перехода на другие единицы (скажем, если экспонента длины +1, то увеличив длину в 10 раз, мы увеличим значение в 10 раз, а если -1, то уменьшим в 10 раз). Но ему не приходит в голову взять эти единицы размерности и записать их делением (или умножением!). Это определенный дополнительный абстрактный шаг, который кто-то когда-то придумал позже, возможно, в конце 19-го века или даже начале 20-го. Я бы хотел проследить, кто и когда (если у вас есть идеи, поделитесь).
И вот это меня ошеломило, на самом деле - что столь очевидное для меня км/ч или л/чел или что угодно еще на самом деле даже в конце 19-го века не использовалось широко, и всего за последние 100 лет так твердо вошло в наш математический язык, что школьники сейчас пользуются этим, не задумываясь ни на секунду.
Но вот что следует признать из всего этого, и опять-таки мне это было нетривиально понять - что как минимум школьникам в младших классах, которым только объясняют, что такое умножение, объяснять "2 л/чел * 9 чел" было бы совершенно неправильно. Нам эти 2л/чел кажутся совершенно прозрачным способом написать "2 литра на человека", но на самом деле это нетривиальная абстракция (до которой в 19-м веке не додумались!), в определенном смысле "нечестное" использование деления - которого эти школьники вообще еще не знают - для того, чтобы сошлись размерности. Это не значит, что я согласен с защитниками того самого учителя, нет; все равно и 2*9, и 9*2 надо считать правильным ответом. Но до того, как я обо всем этом как следует подумал, я бы наивно предложил объяснить детям про 2л/чел, а теперь понимаю, что это куда сложнее, чем материал "что такое умножение", который они проходят.
no subject
Date: 2013-04-18 11:48 am (UTC)Если мы детей учим тому, что математика [сначала] является следствием и языком описания объективной физической реальности, то соображения относительно правильного порядка приобретают смысл, как следствие разговора о смысле умножения. Хотя тут, действительно логичнее писать 2 раза по 9 яблок, а не наоборот (ведь 2x+3y, а не x2+y3).
Если же математика — это отдельный язык, который существует сам по себе, и который можно использовать для описания явлений физического мира, но сам по себе он этому миру ничего не должен — то природа умножения к литрам и людям никакого отношения не имеет, и не стоит парить детям мозг этой фигней.
С одной стороны я считаю позицию Арнольда (математика — продолжение физики) более убедительной, с другой — мне кажется, что для ничто так не мешает изучению математики, как бесконечные попытки связать изучаемое с объективной реальностью.
no subject
Date: 2013-04-18 12:57 pm (UTC)Что касается обсуждаемой здесь темы, то я вынужден смягчить категоричность своих высказываний.
1. Хотя «правильный» порядок сомножителей может вызывать споры, всегда можно зафиксировать таковой в определении умножения через сложения. Есть соображения и за тот, и за другой порядок, но это всего лишь война остро- и тупоконечников.
2. Я склонен согласиться с основным тезисом данного поста Анатолия о том, что понятие размерности не является совсем уж базовым, и было бы неправильно опираться на него, если речь идет об обучении школьников умножению.
Тем не менее, остается очень сильное обоснование того, что оба варианта 2*9 и 9*2 правильны. (Тривиальное обоснование заключается в том, что мы всегда можем явно или неявно применить теорему о коммутативности умножения. Но его тоже отбросим.) А именно, задачу можно переформулировать двояко: (а) 9 раз произошла покупка по 2 литра, ответ записывается в виде 2+...+2 (9 раз); (б) было обслужено 9 покупателей (каждому по литру) и так 2 раза, ответ 9+9. Полагаю, что всякая задача на умножение такого рода допускает аналогичную двоякую интерпретацию. Правда, для некоторых задач одна интерпретация кажется «естественней» чем другая, и я придумал пример с картами, где, как мне кажется, наблюдается полная симметрия.
no subject
Date: 2013-04-18 01:23 pm (UTC)Просто вопрос все же чуть в другом: правильно ли в преподавании умножения делать такой упор на его связи со сложением или лучше наоборот, как можно скорее переходить к «абстрактной операции с такими-то свойствами». При втором подходе вопрос порядка множителей отпадает сам собой, его просто нет, и не нужно прибегать к ментальным выкрутасам по выявлению более и менее естественной формулировки задачи.
Я скорее за второй подход. Потому что:
1. В школьном образовании уже параллельно с этой ментальной чистотой изучается сколько угодно понятий, которые предлагаются как данность. Школьная физика вся сплошь из них состоит. И в математике потом ту же производную определяют как предел, а что такое предел — ну, типа, интуитивно понятно. Ну и как бы странно блюсти после этого такую строгую девственность ради, собственно, девственности самой по себе.
2. Как я у же писал, лично на мой вкус, «привязанность к земле» мешает изучению математики, мешает абстрактному мышлению.
3. Де-факто все равно всю эту нарочитую связь со сложением школьники не слишком воспринимают, а просто делают, как им сказали. Хотя про коммутативность им к этому времени они уже все знают. Поэтому вместо девственности, как обычно, получается фарисейство, в чем тоже мало хорошего.