avva: (Default)
[personal profile] avva
За все время, что я в ЖЖ, мне наверное попадались десятки дискуссий о разнице между образованием в советской (или российской) и американской школах. Любопытно, что без исключения все они в итоге доминировались, условно говоря, сравнениями знаменитых матшкол Москвы и Ленинграда с печальным уровнем математики в каком-нибудь американском Мухосранске, штат Айова.

Да, я немного преувеличиваю ради красного словца, но только немного.

Date: 2009-09-13 10:34 am (UTC)
From: [identity profile] gaus.livejournal.com
Уточню вопрос.

Вот представьте, что я, например, микробиолог, который интересуется живописью.

И вы - допустим - хотите обосновать мне важность изучения французского языка.

Ваша аргументация может быть такой: по французски написаны многие интересные работы по истории живописи, которые не переведены.

Ok, принимается. Хороший аргумент.

А вот как вы столь же убедительно обоснуете необходимость умения доказать теорему Пифагора?

Date: 2009-09-13 10:52 am (UTC)
From: [identity profile] vanjka-ivanych.livejournal.com
Очень просто. Умение доказывать математические теоремы - это умение мыслить логически. А если человек не умеет мыслить логически, то он совершает много ошибок в жизни, в том числе, и на бытовом уровне.
Просто теорема пифагора - одна из простейших, и если человек хоть как-то владеет математикой, то он почти наверняка умеет доказывать и теорему пиф-ра. А если он не учился математике, то скорее всего, у него проблемы с логикой

Date: 2009-09-13 10:59 am (UTC)
From: [identity profile] gaus.livejournal.com
А я (в роли микробиолога) отвечаю вам: в моей науке тоже много есть мест, где нужна логика. Например, при создании новых методов множественного выравнивания последовательностей РНК. Или при интерпретации результатов эксперимента. Для того, чтобы убедиться, что я владею логикой, мне вполне достаточно мнения моих коллег о моей научной работе.

о двойном стандарте

Date: 2009-09-13 11:13 am (UTC)
From: [identity profile] vanjka-ivanych.livejournal.com
Правильно. Но он же не сразу стал микробиологом, он сначала учился в школе, где и научился мыслить логически. И учился он, скорее всего, на уроках математики. Так что и теорему Пифагора сможет доказать, даже если не помнит как она доказывается. А если не сможет, то это значит, что ему сложнее будет добиться успехов в микробиологии по сравнению с теми коллегами, кто умеет это делать.

Re: о двойном стандарте

Date: 2009-09-13 11:24 am (UTC)
From: [identity profile] gaus.livejournal.com
Ответ микробиолога: "То есть по сути вы признаёте, что мне совершенно незачем знать о существовании такой штуки, как теорема Пифагора. Если я хороший микробиолог, то я, по-вашему, смогу её доказать, если вдруг она мне зачем-то понадобится, а до этого дня (который, скорее всего, никогда не наступит) это знание для меня совершенно лишнее"

Re: о двойном стандарте

Date: 2009-09-13 11:33 am (UTC)
From: [identity profile] greps.livejournal.com
Ответ математика: непонятно как микробиолог стал микробиологом с тройкой по математике.

Re: о двойном стандарте

From: [identity profile] gaus.livejournal.com - Date: 2009-09-13 11:36 am (UTC) - Expand

о двойном стандарте

Date: 2009-09-13 12:33 pm (UTC)
From: [identity profile] vanjka-ivanych.livejournal.com
Вообще-то, я о знании ничего не говорил, я всё время говорил об УМЕНИИ доказывать теор.пифагора. Что касается того, может ли микробиолог обойтись без знания этой теоремы, то здесь я судить не берусь. Я читал где-то, что сейчас в моделировании химических и биологических процессов активно используется математика, и думаю, профессионалам действительно высокого уровня без хорошей математики не обойтись. Однако я уверен, что без умения доказывать простейшие теоремы не обойдётся даже посредственный микробиолог

о двойном стандарте

Date: 2009-09-13 12:40 pm (UTC)
From: [identity profile] vanjka-ivanych.livejournal.com
Это примерно как в спорте: может ли футболист быть профессионалом, не умея прыгать кульбит? Не может. У него тело обязательно так должно быть развито, что кульбиты он научится делать с первого-второго раза, хотя, играя в футбол, он никогда не прыгает кульбиты. С теоремой пиф-ра - та же ситуация.

Re: о двойном стандарте

Date: 2009-09-13 03:16 pm (UTC)
From: [identity profile] mme-n-b.livejournal.com
В школе, в колледже, и в университете (т. е. один-три раза) ему преподавали логику и критическое мышление, как отдельные классы. Эти навыки он помнит, и применяет на работе. А Пифагора он сдал в девятом классе и забыл.

Date: 2009-09-13 11:03 am (UTC)
From: [identity profile] cherez-jopu.livejournal.com
>А если он не учился математике, то скорее всего, у него проблемы с логикой

как в анекдоте - "ты рыбок любишь?"
"нет."
"значит ты пидарас!"

Date: 2009-09-13 01:29 pm (UTC)
From: [identity profile] a-grabenich.livejournal.com
Во-первых, умение доказать теорему Пифагора может быть (и судя по течению этой дискуссии является) свидетельством не умения доказывать теоремы, а хорошей памяти и впечатлительности. Позволю себе усомниться, что провинциальная (а равно и массовая столичная) школа дает образование, позволяющая самостоятельно решать задачи "на доказательство" такого класса сложности, как ТП. Конечно, учитель(ница) английского могут иметь еще кой-чего в загашнике (от математического кружка в школе до брошенной из-за безденежья аспирантуры по физматспециальности), но тогда игра нечестная :)
Я думаю, задачи "на доказательство" вообще не являются сильной стороной советского (про иные не знаю ничего) массового образования. Мне представляется, что годам к 25-ти человек, избравший гуманитарную стезю, чаще всего вообще уже плохо помнит, в чем смысл _математического_ понятия "доказательство" и какой вызов человеческому уму оно обозначает.

Во-вторых, умение доказывать теоремы не есть умение логически мыслить. По-моему, "геометрическое" доказательство, которое многие из участников дискуссии имеют в виду и которое мне лично кажется очень красивым (когда-то целую вечность назад я аналогичным образом решил задачку на собеседовании в одну из московских матшкол), связано скорее с синтетическими свойствами ума, чем с логическим анализом. Садишься, рисуешь, и вдруг... Строго я это показать не могу, и Вы вольны мой аргумент отвергнуть. Тем не менее.

Date: 2009-09-13 06:41 pm (UTC)
From: [identity profile] dimorlus.livejournal.com
Умение доказывать математические теоремы - это умение мыслить логически.

Но обратное - то не верно... С точки зрения логики :)

Date: 2009-09-13 10:55 am (UTC)
From: (Anonymous)
А зачем бы это микробиологу интересоваться живописью? Он же микробиолог, а не искусствовед.

Date: 2009-09-13 11:01 am (UTC)
From: [identity profile] gaus.livejournal.com
Например, просто интересно.

Date: 2009-09-13 11:08 am (UTC)
From: [identity profile] pffnzrpb.livejournal.com
Математику знать на элементарном уровне тоже просто интересно. А теорему Пифагора человек усвоит, пока будет учится воспринимать математику на элементарном уровне. Приведу пример.

Чтобы получать удовольствие от книг, нужно сначала научиться читать. Далее, читая, думая, становясь умнее, можешь читать более серьезную литературу, становиться еще умнее и так далее. Так вот, теорема Пифагора, это что-то вроде Незнайки в мире математики. Первая книга для чтения, и все такое.

Date: 2009-09-13 11:12 am (UTC)
From: [identity profile] gaus.livejournal.com
Я же не оспариваю, что это может быть интересно.

Мой собеседник хочет обосновать более сильное утверждение - что это обязательно. Мне интересно, как это можно сделать. Я сам не взялся бы за такую задачу.

Date: 2009-09-13 11:21 am (UTC)
From: [identity profile] pffnzrpb.livejournal.com
Обязательно, это в смысле обязательно для культурного человека. То, что многие не считают, что знать азы математики для культурного человека обязательно, на мой взгляд плохо.

(no subject)

From: [identity profile] gaus.livejournal.com - Date: 2009-09-13 11:26 am (UTC) - Expand

(no subject)

From: [identity profile] pffnzrpb.livejournal.com - Date: 2009-09-13 11:30 am (UTC) - Expand

Date: 2009-09-13 07:08 pm (UTC)
From: [identity profile] slonarch.livejournal.com
Моё обоснование: математика является языком описания мира, который используется, в том числе, точными науками. Если человек не знает математики, то он практически неспособен понять основные законы природы, например, не говоря уже о том, чтоб самому чего-то там описать. То же относится и ко многим другим областям знаний - некоторым общественным и экономичеким наукам.

Date: 2009-09-14 04:08 am (UTC)
From: [identity profile] gaus.livejournal.com
Это справедливо только для профессионалов точных наук.

Я просил указать преимущество, которое было бы столь же очевидно, как при владении иностранными языками (если уж мой собеседник предпочел эту аналогию)

Date: 2009-09-14 02:00 pm (UTC)
From: [identity profile] slonarch.livejournal.com
Это справедливо для кого угодно - без определённого уровня математики ток в розетке так и останется чем-то вроде магии. Без определённого уровня математики даже "153" останется всего лишь "много", но этот уровень вы осилили, и потому его полезность вам очевидна. Точно так же и без владения иностранными языками останется недоступна иностранная литература - осознанная речь останется чем-то вроде каракулей. Знание языка (как французского, так и математики) необходимо для пониамания выраженной на нём человеческой мысли.

Date: 2009-09-14 02:13 pm (UTC)
From: [identity profile] gaus.livejournal.com
Тексты, написанные на человеческих языках, доступны большинству людей. А тексты, написанные языком математики, являются достоянием очень узкой касты инженеров и учёных - да и то обычно только в их рабочее время.

Так что зачем непрофессионалу владение этим языком - непонятно.

(no subject)

From: [identity profile] slonarch.livejournal.com - Date: 2009-09-14 02:42 pm (UTC) - Expand

Date: 2009-09-13 11:56 pm (UTC)
From: [identity profile] some-tales.livejournal.com
Это, конечно, не является необходимостью. Это является преимуществом.

Date: 2009-09-14 05:26 am (UTC)
From: [identity profile] gaus.livejournal.com
Преимуществом в чём?

Date: 2009-09-14 12:09 pm (UTC)
From: [identity profile] some-tales.livejournal.com
В общении с теми, кто ценит математику.

Это вопрос о том, зачем нужны хорошие манеры, если практически они бессмысленны.

Date: 2009-09-14 12:12 pm (UTC)
From: [identity profile] gaus.livejournal.com
А если я общаюсь с теми, кто ценит математику, но не о математике, а об истории живописи?

(no subject)

From: [identity profile] some-tales.livejournal.com - Date: 2009-09-14 01:36 pm (UTC) - Expand

(no subject)

From: [identity profile] gaus.livejournal.com - Date: 2009-09-14 01:42 pm (UTC) - Expand

December 2025

S M T W T F S
  123 4 56
78 9 10 11 1213
1415 1617181920
21 22 23 24 2526 27
28293031   

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Dec. 29th, 2025 06:15 pm
Powered by Dreamwidth Studios